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Abstract
Bayesian optimization (BO) is a powerful framework to optimize black box expensive-to-
evaluate functions via sequential interactions. In several important problems (e.g. drug
discovery, circuit design, neural architecture search, etc.), though, such functions are de-
fined over combinatorial and unstructured spaces. This makes existing BO algorithms not
feasible due to the intractable maximization of the acquisition function to find informative
evaluation points. To address this issue, we propose GameOpt, a novel game-theoretical
approach to combinatorial BO. GameOpt establishes a cooperative game between the
different optimization variables and computes informative points to be game equilibria of
the acquisition function. These are stable configurations from which no variable has an
incentive to deviate – analog to local optima in continuous domains. Crucially, this allows
us to efficiently break down the complexity of the combinatorial domain into individual
decision sets, making GameOpt scalable to large combinatorial spaces. We demonstrate
the application of GameOpt to the challenging protein design problem and validate its
performance on two real-world protein datasets. Each protein can take up to 20X possible
configurations, where X is the length of a protein, making standard BO methods unusable.
Instead, our approach iteratively selects informative protein configurations and very quickly
discovers highly active protein variants compared to other baselines.
Keywords: Combinatorial BO, Game Theory, Gaussian Processes, Protein Design

1. Introduction

Many scientific and engineering problems such as drug discovery (Negoescu et al., 2011),
neural architecture search (Kandasamy et al., 2018), or circuit design (Lyu et al., 2018) involve
the optimization of expensive-to-evaluate black-box functions over combinatorial unstructured
spaces involving binary, integer-valued, and categorical variables. As a concrete example,
consider the protein design problem i.e. finding the optimal amino acid sequence to maximize
the functional capacity (fitness) of the protein. Such fitness function can be elucidated
only from queries involving real-world protein synthesis experiments. Moreover, exhaustive
exploration is infeasible for both traditional lab methods and computational techniques
(Romero et al., 2013) due to combinatorial explosion: a typical protein has 300 amino acid sites,
each to be filled with one of twenty natural amino acids, yielding 20300 candidate variants.
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Figure 1: Illustration of GameOpt. GameOpt defines a game among the decision variables,
where game rewards are represented by the upper confidence bound (UCB) function. This
decouples the combinatorial decision space into individual decision sets and allows GameOpt
to efficiently compute game equilibria, i.e. analog of local maxima of the acquisition function.

A standard framework for optimizing black-box functions with minimal evaluations is
Bayesian optimization (BO) (Mockus, 1974), which has proven successful in a variety of
domains. BO constructs a probabilistic surrogate model as a representation of the underlying
black-box function e.g. using Gaussian Processes (GPs) (Rasmussen et al., 2006). Then,
it iteratively selects informative decision points which are typically the maximizers of a
designed acquisition function. When considering combinatorial domains, however, standard
BO methods are intractable since the latter step requires exhaustive search over the whole
combinatorial space (e.g. of size 20300 in the context of proteins) without further assumptions.

To address this challenge, in this work, we propose GameOpt, a novel game-theoretical
framework for combinatorial BO. To circumvent the intractable maximization of an acquisition
function, GameOpt defines a cooperative game between the discrete domain variables and,
at each round, selects informative points to be game equilibria of the acquisition function (in
this work we take this to be the Upper Confidence Bound (UCB) function). These are stable
configurations from which no agent (variable) has an incentive to deviate and can be thought
of as local optima of the underlying problem. For an overview of the method, see Figure 1.

Contributions We make the following contributions:

• We propose GameOpt, a novel game-theoretical BO framework for large combinatorial
and unstructured search spaces. GameOpt computes informative evaluation points
as the equilibria (i.e. local optima) of a cooperative game between the discrete
variables. This overcomes the scalability issues of maximizing acquisition functions
over combinatorial domains. GameOpt is a flexible procedure where the resulting
per-iteration game can be solved by any readily available game strategy or solver.

• We show the applicability of GameOpt to the challenging protein design problem,
involving search spaces of categorical inputs. There, GameOpt advances the protein
design process by mimicking natural evolution via a game between protein sites.

• We experimentally validate the performance of GameOpt on two real-world protein
design problems based on human binding protein GB1 (Wu et al., 2016; Olson et al.,
2014). We show that GameOpt converges faster i.e. it requires less number of BO
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iterations to identify highly binding protein variants compared to baseline methods
such as classical directed evolution.

2. Problem Statement and Background

Problem Statement We consider the problem of optimizing a costly-to-evaluate, black-box
function f : X → R over a combinatorial unstructured space X . Without loss of generality,
let each element x ∈ X be represented by n discrete variables x1, x2, . . . , xn, where each xi

takes values from a set X (i), this makes the domain of n ≥ 1 variables X = X (1) × . . .X (n).
Assuming |X (i)| = k, ∀i, the size of the combinatorial space X is kn.

As a concrete motivating example, consider the protein design problem considered in
Sec. 4. There, f(x) corresponds to the fitness value of the designed amino acid sequence
x, and each x can take 20n values where n is the number of protein sites. Moreover, a
(noisy) evaluation f(x) is a labor-intensive process, requiring extensive efforts and specialized
laboratory equipment.

Bayesian Optimization (BO) and Gaussian Processes (GPs) Bayesian Optimiza-
tion (Mockus, 1974) is a powerful framework for optimizing complex, noisy, and expensive-to-
evaluate functions. BO leverages Bayesian inference to model the underlying function with a
surrogate e.g. a Gaussian Process (GP) and iteratively selects evaluation points that are the
most informative in terms of reducing uncertainty or enhancing model performance.

Formally, a Gaussian Process GP(µ(·), k(·, ·)) over domain X is specified by a prior
mean function µ(x) : X → R and a covariance function k(x, x′) : X × X → R, denoted by
f(x) ∼ GP(µ(x), k(x, x′)), where f(x) represents the function value at input x. The mean
function µ(x) characterizes the expected value of f(x) i.e. E [f (xi)] = µ (xi) , ∀xi ∈ X , and
the kernel (covariance function) k(x, x′) = E [(f (x)− µ (x)) (f (x′)− µ (x′))] governs the
correlation between f(x) and f(x′) for any pair of inputs x, x′ ∈ X . Given a set of observed
data points X and their corresponding vector of noisy observations Y = f(X) + ϵ with
Gaussian noise ϵ ∼ N (0, σ2), and a GP prior defined by GP(µ(x), k(x, x′)), the posterior
distribution of the GP given new observations X† is again Gaussian p(f† | X,X†, f) =
N (µ†, σ

2
† ) with posterior mean µ† = K(X†, X)[K(X,X) + σ2I]−1Y and posterior variance

σ2
† = K(X†, X†)−K(X†, X)[K(X,X)+σ2I]−1K(X,X†), where K and I are the kernel and

identity matrices, respectively.
To maximize f , BO algorithms iteratively select evaluation points so as to balance

exploration and exploitation. Typically, at each iteration, they select the maximizer of
a given acquisition function such as the widely-adopted Upper-confidence bound (UCB)
(Srinivas et al., 2009) function. Given a GP model, the UCB function is defined as

UCB(GP, x) = µ(x) + βσ(x), (1)
where µ(x) and σ(x) are the posterior mean and standard deviation at point x according to
GP, and β ∈ R is tunable width.

While standard BO methods can efficiently optimize UCB(GP, ·) in relatively-sized
finite or continuous domains, they become very soon intractable in the case of combinatorial
unstructured domains, such as the space of possible amino acid sequences. In the next section,
we propose GameOpt, a novel BO approach that circumvents such prohibitive difficulty.
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Algorithm 1 GameOpt

Input: GP prior GP0(µ0, k(·, ·)), initial data D0 = {(xi, yi = f(xi) + ϵ)}, batch size B > 0.
1: for iteration k = 1, 2, . . . ,K do
2: Construct game with reward function UCB(GPk−1, ·) :

∏n
i=1X (i) → R

3: Compute batch of B equilibria {xk,i}Bi=1 of the above. ▷ Equilibrium subroutine
4: Obtain evaluations yk,i = f(xk,i) + ϵk,i, ∀i = 1, . . . , B
5: Update Dk ← Dk−1 ∪ {(xk,i, yk,i)}Bi=1

6: Posterior update of model GPk with Dk

7: end for
8: return x⋆K ← argmax(x,y)∈DK

y ▷ Best-so-far

3. The GameOpt approach

In a nutshell, the proposed GameOpt (Optimistic Games) approach circumvents the
combinatorial optimization of the UCB function by defining a cooperative game among the n
input variables and computes the associated equilibria as candidate evaluation points. More
formally, at each iteration k, GameOpt defines a cooperative game (Fudenberg and Tirole,
1991) involving N = {1, 2, . . . , n} players, each player i taking actions in the discrete set Xi.
In such a game, the players’ interests are aligned towards the goal of maximizing the UCB
function UCB(GPk, ·) :

∏N
i=1X (i) → R, where GPk is the current GP estimate at iteration

k. Thus, it can be interpreted as an optimistic game w.r.t. to the true unknown f . In such a
game, the goal of the players is to compute game equilibria, defined as follows.

Def 1 (Equilibrium). Let v : X → R be the game reward function. A joint strategy profile
xeq = (x1eq, . . . , x

n
eq) is an equilibrium if, for every player i ∈ N , v(xieq, x−i

eq ) ≥ v(xi, x−i
eq ),∀xi ∈

Xi, where x−i
eq is the joint equilibrium strategy of all players except i.

The existence of such equilibrium point(s) is guaranteed for finite games with finite sets
of players, actions, and payoffs (Fudenberg and Tirole, 1991). Moreover, efficient polynomial-
time equilibrium-finding methods can be employed, such as Iterative Best-Response (IBR),
where players update their actions sequentially, or simultaneous multiplicative weights up-
dates such as the Hedge (Freund and Schapire, 1997) algorithm. We report these two
possible strategies in Algorithms 2 and 3 in Appendix A. Intuitively, they achieve this by
breaking down the complex decision space into individual decision sets, as illustrated in
Figure 1. Our overall approach is summarized in Algorithm 1, where we allow to compute
a batch of B > 1 equilibria. Such a batch is evaluated by f , the GP model is updated
accordingly, and a new game is defined at the next iteration based on the updated posterior.

Local Optimality Within GameOpt, each player strategically selects actions to maximize
their collective payoff, much like seeking local optima in a continuous multi-dimensional
function (see Figure 1). In continuous optimization, a local optimum is a point, where there
is no direction that leads to an improvement, similarly, as in our framework there is not a
player that can unilaterally improve the value of the collective pay-off. In essence, seeking
equilibria is an analog of seeking local optima of a continuous acquisition function, and our
game-based approach allows us to effectively pinpoint them within a combinatorial space.
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3.1 Related work

While there exist rather few works in the area, existing combinatorial BO methods either
target surrogate modeling with discrete variables (Baptista and Poloczek, 2018; Oh et al., 2019;
Garrido-Merchán and Hernández-Lobato, 2020; Kim et al., 2021) or optimizing acquisition
function within discrete spaces (Baptista and Poloczek, 2018; Deshwal et al., 2020, 2021a,b;
Khan et al., 2023). However, they often require a parametric surrogate model with higher-
order interaction specifications for combinatorial structures (Baptista and Poloczek, 2018)
or domain-specific knowledge (Deshwal et al., 2020). In contrast, GameOpt relies on a
non-parametric surrogate model, without the need for domain-specific knowledge.

Closest to ours is (Daulton et al., 2022), which also targets optimizing the acquisition func-
tion in high-cardinality discrete/mixed search spaces via a probabilistic reparameterization
(PR) that maximizes the expectation of the acquisition function. However, PR fails at being
tractable since it requires evaluating the expectation over the joint distribution of all decision
variables, requiring combinatorially many elements to be summed. An accurate estimate
would need a similar number of samples proportional to a combinatorially large number
without a special structure. In contrast, GameOpt treats each variable independently
(potentially in parallel) within the game, keeping the values of the remaining variables fixed
during each strategy update. We use PR as a baseline to evaluate our approach in Sec. 4.

Recently, the interplay between BO and game theory has been explored by the line of
works (Sessa et al., 2019, 2022), but its connection with combinatorial BO is novel.

4. Application to Protein Design

In this section, we specialize the GameOpt framework to protein design. In this context,
computing game equilibria follows the natural principle of beneficial mutants and mirrors
the proteins’ mutation and selection process. Inspired by this, in Algorithm 4 (Appendix B)
we provide a tailored version of GameOpt for protein design which computes equilibria via
an iterated best response rule. We showcase its performance in two real-world datasets.

In protein design context, GameOpt establishes a cooperative game among the different
protein sites i ∈ {1, . . . , n}, where n is the length of the protein sequence. Each site i
chooses an amino acid from the set Xi = {A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y },
representing the concept of mutations. Their objective is to converge to a highly rewarding
protein sequence, as measured by the GP-predicted UCB score. This mirrors the selection
phase in evolutionary search, providing a directed approach to optimization. Compared to
classical evolutionary methods (see Appendix B for an overview), though, GameOpt mimics
evolution at each interaction using the surrogate UCB function.

Datasets We empirically evaluate GameOpt on a real-world protein design problem:
protein G domain B1, GB1, binding affinity to an antibody IgG-FC (KA) on two datasets
GB1(4) (Wu et al., 2016) and GB1(55) (Olson et al., 2014), with sequence length 4 and
55, respectively. The former is fully combinatorial i.e. covering fitness measurements of
204 variants. Here, each protein site is treated as a player in the GameOpt. The latter is
non-exhaustive, including only 2-point mutations of GB1. Thus, an MLP having R2 = 0.93
on a test set is trained and treated as the ground truth fitness for the fully combinatorial
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(a) GB1(4), n = 4, 18 reps.
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(b) GB1(55), n = 55, 10 reps.
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(c) GB1(55), n = 10, 10 reps.
Random PR IBR-Fitness GameOpt Best strategy

Figure 2: Convergence speed of methods in terms of log fitness value of the best-so-far protein
throughout BO iterations, under batch size B = 5. Each point is the average of multiple
replications initiated with different training sets having 100 and 1000 protein variants, for
GB1(4) and GB1(55). Similarly, error bars are interquartile ranges averaged over replications.
In all experiments GameOpt discovers better protein sequences at a much faster rate.

dataset. For GB1(55), we also consider a modified setup where “only” 10 sites can be mutated.
Further experimental details are in Appendix D.

Baselines We benchmark GameOpt against the following baselines: (1) IBR-Fitness,
which mimics directed evolution (Arnold, 1998) through a series of local searches on the
fitness landscape, iteratively selecting the B best-responses based on log fitness criterion; (2)
PR (Daulton et al., 2022), a state-of-the-art discrete/mixed BO approach picking B points
using the expected UCB criterion, and (3) Random baseline randomly sampling B random
sequences at each iteration. Further method details are in Appendix C.

We assess our method using two key metrics: convergence speed and sampled batch diver-
sity (i.e. the degree of distinctiveness among newly acquired samples in comparison to the orig-
inal data point particularly in the context of the input space) for BO evaluation. Convergence
speed is tracked by the log fitness value of the best-so-far discovered protein variant across
BO iterations. We provide the evaluation in terms of sampled batch diversity in Appendix E.
Results GameOpt consistently outperforms baselines in all experiments, discovering
higher log fitness protein sequences faster as shown in Figure 2. While initially slightly
surpassed by IBR-Fitness in GB1(4) setting, GameOpt can more efficiently explore and
samples diverse points (see Figure 3 in Appendix E), discovering high fitness proteins faster.
Notably, while IBR-Fitness performs best-responses on the true log fitness function, GameOpt
simulates best-response dynamics directly on the UCB model, allowing to compute equilibria
at each iteration. In GB1(55), GameOpt excels in identifying high log fitness protein
sequences even from the start.

In addition to being outperformed in all experiments, PR also comes with higher com-
putational demands. As highlighted in Sec. 3.1, PR relies on the expected UCB as the
acquisition function, requiring expectation computation across players set and amino acid
choices. This makes its performance contingent on accurately estimating expected UCB
through combinatorially many sequence samples. In contrast, GameOpt efficiently finds
stable outcomes by breaking down the combinatorial search space into individual decision
sets, resulting in a more manageable process. Further discussion on the performance of
methods can be found in Appendix E.
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Appendix A. Equilibrium finding subroutines

With Ibr, evaluation points are generated from the best responses (BRs) as provided in
Algorithm 2. Concretely, under the cooperative game setting outlined in Sec. 3 and given
GP-predicted UCB function, each player simultaneously best responds to the joint strategy
from the previous round. Subsequently, the strategy that maximizes the predicted UCB is
executed for that particular round.

Algorithm 2 IterativeBestResponse (Ibr)

Input: Domain X , payoff v : X → R, players N , parameters B, β.
1: xbr

0 ← random joint strategy, xbr
0 ∈ X

2: for round t = 1, 2, . . . , T do ▷ BR game
3: X br

t ←
{
(xi,br, x−i,br

t−1 ), such that xi,br = argmaxx∈X (i) v(x, x
−i,br
t−1 )

}n

i=1

4: Play xbrt ← argmaxxt∈X br
t
[v(xt)]

5: end for
6: return xbr

T ▷ Equilibrium

Using Hedge (Freund and Schapire, 1997), we cast the sampling batch step of GameOpt
as an instance of adversarial online learning (Cesa-Bianchi and Lugosi, 2006) with multiple
learners. Here, each player selects a strategy based on their available options, without
knowledge of the payoff function selected by an adversary (nature). After observing the joint
payoff, players’ strategies are re-weighted based on past performance. Through repeated
rounds of play and re-weighting, the empirical frequency of play forms a Coarse Correlated
Equilibrium (CCE) (Cesa-Bianchi and Lugosi, 2006).

Algorithm 3 Hedge

Input: Domain X =
∏n

i=1X (i) with | X (i) |= K, payoff v : X → R, players N , parameters
η, β, tlast.

1: Initialize weights w1 ← 1
K [1, . . . , 1] ∈ R|N |×K

2: for round t = 1, 2, . . . T do ▷ Compute CCE
3: Sample xit ∼ wi

1,∀i ∈ N
4: Set joint strategy xt ←

⋃
i∈N xit

5: for player i ∈ N do ▷ Players’ payoff
6: ℓx−i

t
← [v(xj,−i

t )]∀j∈X (i) , where xj,−i
t = j ∪ {

⋃
i′∈N\{i} x

i′
t }, ∀j ∈ X (i)

7: Set wi
t+1 ∝ wi

t exp(ηℓx−i
t
)

8: end for
9: end for

10: return Uniform{x1, . . . , xT } ▷ Equilibrium

Appendix B. GameOpt for Protein Design

The core concept of the GameOpt framework is inspired by the principles of natural evolution.
In protein design, achieving equilibrium of a cooperative game over protein sites mirrors
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the iterative mutation and selection process in evolution. Where it converges to beneficial
mutant sequences, can be thought of as equilibrium of the game. Given that protein search
spaces align well with the domain GameOpt works on, we introduce a specialized version of
GameOpt, tailored for protein design applications.

Algorithm 4 GameOpt for Protein Design

Input: GP prior GP0(µ0, k(·, ·)), initial data D0 = {(xi, yi = f(xi) + ϵ)}, protein sites N ,
batch size B > 0, parameter β.

1: for iteration k = 1, 2, . . . ,K do
2: Construct game with reward function UCB(GPk−1, β, ·) :

∏n
i=1X (i) → R

3: for b = 1, 2, . . . , B do
4: xbr0 ← random starting protein sequence, xbr0 ∈ X
5: for round t = 1, 2, . . . , T do ▷ BR game
6: X br

t ←
{
(xi,br, x−i,br

t−1 ), such that xi,br = argmaxx∈X (i) UCB(x, x−i,br
t−1 )

}n

i=1

7: Play xbrt ← argmaxxt∈X br
t
[UCB(xt)]

8: end for
9: Collect equilibrium protein sequence xk,b ← xbrT

10: end for
11: Obtain fitness evaluations yk,i = f(xk,i) + ϵk,i, ∀i = 1, . . . , B
12: Update Dk ← Dk−1 ∪ {(xk,i, yk,i)}Bi=1

13: Posterior update of model GPk with Dk

14: end for
15: return x⋆K ← argmax(x,y)∈DK

y ▷ Best-so-far

Evolutionary search A considerable line of work (Arnold, 1998; Hansen, 2006;
Romero and Arnold, 2009; Yang et al., 2019; Deshwal et al., 2020; Cheng et al., 2022; Low
et al., 2023) centers around evolutionary search algorithms for optimizing black-box functions.
Within combinatorial amino-acid sequence space, the highly regarded technique, directed
evolution (Arnold, 1998; Romero and Arnold, 2009), draws inspiration from natural evolution
and identifies local optima through a series of repeated random searches, characterized by
controlled iterative cycles of mutation and selection. Expanding upon this, machine learning-
guided variants (Yang et al., 2019; Wittmann et al., 2021) mitigate the sample-inefficiency
and intractability concerns associated with directed evolution. In general, these methods
are not data-driven in the sense they do not use the whole extent of past data. They focus
on the best variant found so far or a selection of thereof and propose a random search from
thereon. Our approach uses all the data to create an estimate of the fitness landscape and
utilize it to simulate a cooperative evolution.

Appendix C. Baselines

As explained in Sec. 4, we empirically evaluate GameOpt with the Ibr algorithm for
protein design, comparing it to several baselines: IBR-Fitness, inspired by directed evolution
(Algorithm 5), Random (Algorithm 6), samples evaluation points randomly, and PR, an
optimizer of expected UCB (Daulton et al., 2022).
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Algorithm 5 Iterative Best Response-Fitness (Ibr-Fitness)

Input: Domain X , fitness function f : X → R, players N , initial data D0 = {(xi, yi =
f(xi) + ϵ)}, batch size B > 0.

1: xbr0 ← random joint strategy, xbr0 ∈ X
2: for iteration k = 1, 2, . . . ,K do
3: Randomly selected B players ∈ N generates BRs {xk,i}Bi=1 w.r.t. xbrk−1 based on f(·)
4: Obtain evaluations yk,i = f(xk,i) + ϵk,i, ∀i = 1, . . . , B
5: Update Dk ← Dk−1 ∪ {(xk,i, yk,i)}Bi=1

6: Play xbrk ← argmaxxk,i∈{xk,i}Bi=1
yk,i

7: end for
8: return x⋆K ← argmax(x,y)∈DK

y ▷ Best-so-far

Algorithm 6 Random

Input: Domain X , f : X → R, initial data D0 = {(xi, yi = f(xi) + ϵ)}, batch size B > 0.
1: for iteration k = 1, 2, . . . ,K do
2: Randomly generate batch of B points {xk,i}Bi=1,∀xk,i ∈ X
3: Obtain evaluations yk,i = f(xk,i) + ϵk,i, ∀i = 1, . . . , B
4: Update Dk ← Dk−1 ∪ {(xk,i, yk,i)}Bi=1

5: end for
6: return x⋆K ← argmax(x,y)∈DK

y ▷ Best-so-far

Appendix D. Experiment details

In all experiments, we use a GP surrogate with an RBF kernel for GP-based methods. The
RBF specifies lenghtscales for each input variable separately – sometimes known as ARD
kernels Rasmussen et al. (2006). To handle categorical inputs to the GP surrogate, we employ
feature embeddings as representations for these inputs. The prior mean for the GP is pre-
defined as the average log fitness value over the whole dataset. Kernel hyperparameters are
optimized prior to the start of optimization and remain fixed throughout the BO iterations;
specifically, lengthscales are optimized over the training set at the start of each replication
using Bayesian evidence, and the outputscale is fixed to the difference between the maximum
fitness value observed in the dataset & mean. In other words, we fit also a prior mean. A
consistent observation noise of 0.0004 is maintained for each training example. Detailed
(hyper)parameters for the experiments can be found in Table 1.

To extract feature embeddings for GB1(55) dataset, we use a pre-trained transformer
protein language model from esm library by Meier et al. (2021).

GB1(4) The dataset (Wu et al., 2016) is fully combinatorial i.e. encompassing fitness
measurements of 204 variants with 4 sites. In this context, each protein site is treated as a
player in the cooperative game of GameOpt, with N = {1, . . . , 4}. Additionally, we also
analyzed the effect of player grouping inspired by epistasis phenomenon in protein design
and provided the analysis in Appendix E.

We train the GP surrogate by utilizing a small portion of the dataset, specifically 0.0625%,
consisting of 100 protein variants. Since existing literature does not provide common ground
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Table 1: (Hyper) parameter values.

(Hyper) parameter Explanation Value
K The number of active learning (BayesOpt) iterations 50
T The number of game rounds 400 for GB1(4) and 200 for GB1(55)
| N | The number of players 4 for GB1(4), 10 and 55 for GB1(55)
| D0 | The number of samples in training set 100 for GB1(4) and 1000 for GB1(55)
η Learning rate 0.9
ϵ Observation noise for each training example 0.0004
l RBF kernel lengthscale optimized offline
β The UCB tuning parameter 2
B Batch size per BO iteration 5

feature embeddings as representations for the GB1(4) variants, we use chemical descriptors
(Wu et al., 2019) to extract 60 feature embeddings using a training set of size 1000 protein
variants with LASSO method. We apply k-fold cross-validation with k = 18 different
train/test dataset partitions. Following this, we evaluate the performance of our approach
over 18 replications. In each replication, we initialize the GP surrogate-based baseline
methods with the same initial GP model as our approach. We also use the same initial
protein sequence for comparison within that replicate but employ different initial points
across replications. We set the starting joint strategy as the protein sequence having the
highest log fitness value in the training set. The prior mean of the GP is fixed at 1.0162.
For the kernel hyperparameters, 60 lengthscales are defined for each feature dimension and
optimized offline at the beginning of a replication; outputscale is set to 0.02169.

GB1(55) We experiment on the non-exhaustive dataset GB1(55) that only includes 2-point
mutations throughout the entire 55 residues of the GB1 protein resulting in 535, 917 variants
(Olson et al., 2014) and consider two settings: 55 and 10 number of players.

GB1(55) with 55 Players In this context, we treat each protein site as a player in the
GameOpt, thus, N = {1, . . . , 55}.

As the dataset is not completely combinatorial, we do not have access to measured fitness
values for all 2055 variants. To overcome this, we employ a Deep Neural Network-based
(DNN) oracle to predict fitness scores using feature embeddings associated with the protein
sequences. We again opt to feature embeddings as the representation for categorical input
of GP surrogate. Unlike GB1(4), we utilize the ESM-1v protein language model from esm
introduced by Meier et al. (2021), specifically designed for predicting protein variant effects
and can be used to extract embeddings. With ESM-1v, we represent a sequence through a
1280 dimensional feature embedding vector. We train the oracle with supervised learning,
using the training set having (477 854× 1280, 477 854) feature & label pairs. Obtaining the
exhaustive version of the GB1(55) dataset, we train the GP surrogate using ESM-1v feature
embeddings of 1000 randomly generated protein variants and corresponding oracle-predicted
fitness scores for 10 replications.

GB1(55) with 10 players To further analyze the performance of GameOpt compared to
the other baselines, we consider the setting where among the 55 sites, only 10 most significant
protein sites can be mutated.

We employ the same protein language model for embeddings and oracle to predict fitness
scores. However, the choice of 10 players among

(
55
10

)
possibilities is a strategic decision
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that affects the design performance. For this, we define the significance of a protein site
considering the average variation in the fitness scores in the dataset. Concretely, we use
Algorithm 7 and select N = {21, 24, 35, 39, 41, 45, 46, 47, 48, 50} sites as the players. We treat
the rest of the protein sequence i.e. sites that do not correspond to players as fixed.

Algorithm 7 ComputeMostSignificantSites

Input: Dataset D = (xi, yi)
N
i=1, players K, protein sequence length L, amino acids set A.

1: Initialize players← ∅, site_scoreka ← ∅ and site_vark ← 0,∀k ∈ {1, . . . , L}, a ∈ A
2: for each pair (xi, yi) ∈ D do
3: for each site k ∈ {1, . . . , L} do
4: Set amino acid in site k as a← xki
5: Append site_scoreka ← site_scoreka ∪ {yi}
6: end for
7: end for
8: site_scorek ←

⋃
a∈A site_scoreka,∀k ∈ {1, . . . , L}

9: site_vark ← stdev(site_scorek), ∀k ∈ {1, . . . , L}
10: return K sites having highest site_score as players

Appendix E. Experiment results

We also evaluate the performance of methods in terms of sampled batch diversity measured
via the mean Hamming distance of sampled variants to the (1) closest initial training point
and (2) proposed variant at the previous iteration (pairwise distance).

From Figure 3, it is clear that GameOpt consistently samples diverse evaluation points
both with respect to the initial closest point from the training set and to the previously
executed strategy in comparison to the other baselines. Diversity in the input space enables
GameOpt to explore effectively and discover informative evaluation points.

IBR-Fitness shows a moderate sample diversity which might be due to its more exploitative
behavior in relation to true log fitness values compared to other baselines. However, its
exploration comes from the randomly generated B best responses, which may not always
guarantee a diverse sample. To this end, IBR-Fitness may not overcome the challenges
addressed above. Although PR maintains a diverse batch in GB1(4), it fails to show the same
performance for the other settings. Furthermore, to sample a batch, PR needs to compute
the expected UCB over all possible strategy combinations of players, making its performance
and hence sample diversity highly dependent on an accurate estimate of this expectation.
Finally, Random exhibits poor performance across all experiments.

E.1 Players’ Grouping

In light of the epistasis (Phillips, 2008) phenomenon in protein design, which underscores
how the effect of a mutation on fitness can be influenced by the presence of other mutations
within the same protein, we explore the concept of grouping protein sites together, i.e. having
players being responsible for more than one site. This is because modeling protein sites
independently may yield different fitness outcomes than finding equilibria among groups

14



0 5 10 15 20 25 30 35 40 45 50
Iterations

0

1

2

3

4
H

am
m

in
g 

di
st

Avg. Hamming Distance w.r.t Initial Point

(a) GB1(4), n = 4, 18 reps.
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(b) GB1(55), n = 55, 10 reps.
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(c) GB1(55), n = 10, 10 reps.
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(d) GB1(4), n = 4, 18 reps.
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(e) GB1(55), n = 55, 10 reps.
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(f) GB1(55), n = 10, 10 reps.
Random PR IBR-Fitness GameOpt Best strategy

Figure 3: Sample diversity of methods measured via mean Hamming distance of sampled
variants w.r.t. (1) the closest initial point from the training set and (2) proposed variant at
the previous iteration (pairwise distance), under batch size B = 5. Each point on each line is
the average of multiple replications initiated with different training sets having 100 and 1000
variants for GB1(4) and GB1(55). Similarly, error bars are interquartile ranges averaged over
replications. In all experiments GameOpt samples a much diverse batch of evaluation points
w.r.t. both measures—resulting in an outperforming performance compared to baselines.

of several sites. To this end, we conduct a preliminary investigation into whether this
phenomenon alters GameOpt’s performance.

We experiment on GB1(4) with {0, 1, 2, 3} protein sites and N = {1, 2} players, consid-
ering 3 possible player & site groupings: {(01, 23), (02, 13), (03, 12)}. For instance, setting
(01, 23) means that the first player is responsible for sites {0, 1} and the other one for {2, 3}.

Our evaluations using the same performance measures (Figure 4) showed that there is
no significant performance difference between individual players and grouping settings as
they all discover the high log fitness valued protein variants at a similar rate while collecting
batches of diverse evaluation points.
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(b) Sample diversity w.r.t (1)
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(c) Sample diversity w.r.t (2)
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Figure 4: GameOpt performance for player grouping, under GB1(4) setting, 18 reps.
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